Dihydrofolate reductase as a model for studies of enzyme dynamics and catalysis
نویسنده
چکیده
Dihydrofolate reductase from Escherichia coli (ecDHFR) serves as a model system for investigating the role of protein dynamics in enzyme catalysis. We discuss calculations predicting a network of dynamic motions that is coupled to the chemical step catalyzed by this enzyme. Kinetic studies testing these predictions are presented, and their potential use in better understanding the role of these dynamics in enzyme catalysis is considered. The cumulative results implicate motions across the entire protein in catalysis.
منابع مشابه
Loop interactions during catalysis by dihydrofolate reductase from Moritella profunda.
Dihydrofolate reductase (DHFR) is often used as a model system to study the relation between protein dynamics and catalysis. We have studied a number of variants of the cold-adapted DHFR from Moritella profunda (MpDHFR), in which the catalytically important M20 and FG loops have been altered, and present a comparison with the corresponding variants of the well-studied DHFR from Escherichia coli...
متن کاملLinking Protein Motion to Enzyme Catalysis
Enzyme motions on a broad range of time scales can play an important role in various intra- and intermolecular events, including substrate binding, catalysis of the chemical conversion, and product release. The relationship between protein motions and catalytic activity is of contemporary interest in enzymology. To understand the factors influencing the rates of enzyme-catalyzed reactions, the ...
متن کاملExtension and Limits of the Network of Coupled Motions Correlated to Hydride Transfer in Dihydrofolate Reductase
Enzyme catalysis has been studied extensively, but the role of enzyme dynamics in the catalyzed chemical conversion is still an enigma. The enzyme dihydrofolate reductase (DHFR) is often used as a model system to assess a network of coupled motions across the protein that may affect the catalyzed chemical transformation. Molecular dynamics simulations, quantum mechanical/molecular mechanical st...
متن کاملEffect of mutation on enzyme motion in dihydrofolate reductase.
Hybrid quantum-classical molecular dynamics simulations of a mutant Escherichia coli dihydrofolate reductase enzyme are presented. Although residue 121 is on the exterior of the enzyme, experimental studies have shown that the mutation of Gly-121 to valine reduces the rate of hydride transfer by a factor of 163. The simulations indicate that the decrease in the hydride transfer rate for the G12...
متن کاملMillisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.
Enzyme catalysis can be described as progress over a multi-dimensional energy landscape where ensembles of interconverting conformational substates channel the enzyme through its catalytic cycle. We applied NMR relaxation dispersion to investigate the role of bound ligands in modulating the dynamics and energy landscape of Escherichia coli dihydrofolate reductase to obtain insights into the mec...
متن کامل